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The three-dimensional waving plate theory is developed to investigate the swimming 
performance of fish undulatory motion. In particular, the propulsive effectiveness is 
discussed. The unsteady potential flow over model rectangular and triangular 
flexible plates performing a motion which consists of a progressing wave with 
variable amplitudes is calculated by the vortex ring panel method. It is found that 
the undulatory motion can reduce three-dimensional effects. It is this important 
hydrodynamic phenomenon that may be one of the main reasons why such 
undulation is widely used as the swimming method by a large number of aquatic 
animals. When the span of the undulating plate is nearly unchanged and the wave 
amplitude is constant or increases slightly along the chord, and the wavelength is 
close to the body length, theoretical results show that the swimming performance is 
best and the flow around the plate has a quasi-two-dimensional property. This 
swimming method may be observed in many fishes, especially those with an 
anguilliform mode of propulsion. The modification of the anguilliform mode of 
propulsion to the carangiform mode is also discussed. It is confirmed that the 
pronounced necking of the body anterior to the tail, which acts to improve the 
propulsive performance, is a major morphological adaptation of fishes using the 
carangiform mode, in which the characteristic nature of flexural movement confined 
to the rear part of the body is that the amplitude of undulation increases posteriorly 
and no complete wavelength is at  any time apparent. 

1. Introduction 
The undulation propulsion method, in which a transverse wave passes backwards 

along the body from head to tail, is widely employed by a large number of aquatic 
animals, such as fishes and some cetaceans. This propulsive means, together with its 
various modifications, has been successful for aquatic animals’ locomotion in a wide 
range of Reynolds numbers, R, based on the animal’s length and forward velocity. 
The movements of most fishes correspond to the flow of large Reynolds numbers. 
Furthermore, characteristic propulsive modes in the great majority of fishes are 
broadly divided into two classes : anguilliform and carangiform. Fishes using the 
anguilliform mode are flexible over the whole body, and the propulsive wave 
travelling from head to tail has an amplitude which, although increasing posteriorly, 
is significant all along the fish’s length. Carangiform propulsion may be considered 
as a development of the anguilliform mode. In this mode of swimming, the amplitude 
of undulation becomes significant only in the posterior half, or even one-third, of the 
fish ; the remainder of the fish’s body is relatively inflexible. In particular, the fastest 
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marine animals have adopted essentially the carangi form mode of propulsion, their 
tails having converged to a crescent-moon shape. This mode of swimming may be 
termed ‘lunate-tail swimming propulsion ’. 

For ‘elongated ’ fishes which are geometrically characterized by slender cylindrical 
forms, Lighthill (1975) developed the elongated-body reactive-force theory. Wu 
(1971) made further investigations on this problem. To analyse the swimming 
propulsion of the lunate tail, Lighthill (1975), Chopra (1974), Chopra & Kambe 
(1977), Lan (1979), Cheng & Murillo (1984) and Ahmadi & Widnall(l986) have used 
two- and three-dimensional unsteady wing theory to treat the problem like the flow 
past pitching and heaving rigid plates. Propulsion by .median and paired fins is 
discussed by Blake (1983a, b ) .  Recently, Karpouzian, Spedding & Cheng (1990) used 
their previously developed perturbation theory to analyse the performance of lunate- 
tail swimming propulsion. For both the anguilliform and carangiform modes of 
propulsion, however, the characteristic wavelike feature of the undulatory motion of 
the flexural body can be observed. Wu (1961) has given a theory on the motion of a 
two-dimensional waving plate. 

Our purpose is to analyse the swimming propulsion of a more realistic model, i.e. 
a three-dimensional waving plate with variable amplitudes. Then, using this unified 
model we shall discuss the general hydrodynamic property of undulatory motion, 
and make a comparative systematic study on three classes of fish propulsion. An 
unsteady vortex ring panel method in the frequency domain, which can be applied 
to the undulatory motion of a flexible plate of general planform with small 
amplitude, has been developed by the present authors to analyse the swimming 
performance of a rectangular waving plate with constant amplitude (Cheng, Zhuang 
& Tong 1989). I n  this paper, the swimming performance of various rectangular and 
triangular waving plates with variable amplitudes is calculated to further analyse 
the three-dimensional effect and the swimming property of the anguilliform mode. 
The change from anguilliform motion to carangiform motion is also discussed. The 
application of optimum motion analysis to carangiform caudal-fin and lunate-tail 
propulsion will be given in papers. 

Because the nonlinear features of the leading- and/or trailing-edge separation 
vortex are not very marked for cruising swimming of some fish, the present linear 
model and leading-edge suction treatment may be suitable for an elementary 
analysis. As has been done in modern computational aerodynamics (Kandil, Chu & 
Tureand 1982), the present method may be developed to consider the nonlinear and 
non-planar aspects of the vortical sheets separated from edges, which may influence 
performance characteristics. I n  fact, a nonlinear analysis of the two-dimensional 
incompressible flow around a flexible plate waving near a rigid wall has been given 
by Zhuang, Shida & Takami (1990). The extension to three-dimensional flow will be 
an important area of future study for considering the nonlinear effect of separated 
vortical sheets on swimming performance. 

2. Formulation and energetics for a waving plate 
It is assumed that a flexible thin plate of finite aspect ratio with a rounded leading 

edge and a sharp trailing edge is performing undulatory motion with small amplitude 
in a stream of incompressible invisid fluid of constant velocity U in the x-direction 
(figure 1) .  The wing planform is assumed to be symmetrical with respect to the x-axis 
and its shape is given by the leading-edge curve xL(y) and trailing-edge curve xT(y), 
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FIGURE 1. Definition sketch. 

both of which are even functions of y. The lateral displacement in the z-direction is 
taken as a progressive planar wave of variable amplitude: 

z = Re [h]  

= Re [h"(x, y) eiwt] 

= Re [H(x ,  y) ei(wt-kz) I, 
where Re stands for 'the real part of ', w = al/U is the reduced frequency referred to 
the length of the root chord 1 (c being the circular frequency), and k = 2 d / A  is the 
wavenumber ( A  being the wavelength). U,  1 and l / U  are taken as the reference 
velocity, length and time to normalize all physical parameters. 

The wave amplitude H ( x ,  y) is taken as an arbitrary function of x as represented 
by a polynome, then 

M 

h(x, y, t) = C a, xn-l exp [i(wt- ks)] 
12-1 

M 

= A,xn-l exp [i(wt-kx+$,)], 
n-1 

where a, = A ,  exp (i$,) may be a complex function of y;  however, at  the present 
stage, we will not consider spanwise deformation so that a, is chosen as a complex 
constant. Physically, the above expression and all the following complex quantities 
should be understood as their real parts. 

The incompressible potential flow may be described by a velocity potential 

@@, y, 2, t) = s+$+, Y, z,  t ) ,  (3) 

where @ is the total potential and q5 the perturbation potential, both of which satisfy 
Laplace's equation. The boundary condition on the wing surface that there is no 
penetration of the fluid across the solid boundary may be linearized as 

The expressions for the boundary conditions a t  the vortex wake surface and infinity 
as well as the Kutta condition at  the trailing edge are given in the next section. 
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According to the unsteady Bernoulli's equation, the non-dimensional pressure 
difference across the plate is 

where A$ = $,, - 
lower surfaces respectively. To the linear approximation, we have 

and the subscript u and 1 denote the values on the upper and 

The main interest here is to calculate the thrust and propulsive efficiency. During 
the undulatory motion, the plate does work a t  a rate E ,  and generates a thrust T, 
which is required to overcome the viscous drag exerted on the animal when 
swimming with velocity U .  The total forward thrust has two sources : the horizontal 
component of the normal force acting on the wing surface, Tp ; and the suction force, 
T,, acting on the rounded leading edge owing to the low pressure associated with the 
fast flow around it ,  which can be calculated by the Blasius theorem. 

The non-dimensional coefficients for the power required, thrust from the normal 
force and from the suction force, can be written as 

CE = Qsu E = iJJFs Re [-A(?,] Re 61 dS 
I = C, + C,, cos 2wt + C,, sin 2wt, 

Re [AC,] Re [3 dS I 
I = C T p  + CTPl cos 2wt + CTpP sin 2wt, 

6 =--- ' - :Ib Re [K,] Re [K,]dy 
T s  qs 

= cTS + cFS, cos 2wt + cTS, sin 2wt, 

where C,, CTp and CTs are their time average values, which are given by 

(7) 

In the above expressions, 

K ,  = lim u(x, y, t )  (x-q);, 

* denotes the conjugate of a complex quantity, q is the dynamic pressure, and 
u = (aq5/ax)Iz-,, is the x-component of perturbation velocity in complex form. 

Z*ZL 
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The thrust contribution from the leading-edge suction is represented by the ratio 

(9) 

and we are interested in this since a very high leading-edge suction may lead to 
boundary-layer separation, which may cause a considerable thrust reduction. The 
hydromechanical propulsive efficiency of swimming is defined as 

(10) ?#I = Tu/E = c,/c,. 
The importance of this parameter has been realized because of the impressive 
capability of some animals to generate fast movements a t  low energy cost. 

The coefficient of side force L (lifting force) acting on the solid plate is 

The coefficient of the yawing moment M (pitching moment) about the axis x = a ,  
z=Ois  

M 
(12) c --=-- - qsl ~l[/psACp(x-a)cLS = CMeiwt. 

These side forces, fluctuating from side to side as the fish’s body undulates, can cause 
an additional body movement which may be thought of as a sort of recoil process. 
Generally, large recoil movements should be avoided. 

3. Unsteady vortex ring method applied to a waving plate 
In potential flow theory, the vortex is restricted to an infinitely thin layer attached 

to the body surface which separates into a wake. It is this vortex sheet that results 
in the swimming propulsion. The basic idea of the vortex ring method is that the 
wing and its wake, both being in the z = 0 plane in the present linear theory, are 
replaced by a suitable distribution of vortex rings, which cause the boundary 
conditions of unsteady potential flow past a flexible plate to be satisfied. 

Because of the symmetry with respect to the x-axis, the problem can be described 
in half-space. The planform is divided into small trapezoidal panels by Lan’s 
‘semicircle’ method (Lan 1979). A vortex ring is placed on each of the panels such 
that tha vortex lines coincide with its perimeter. Let N = N, +N,  be the total number 
of vortex rings, N, and N, being the number of panels on the planform and wake 
respectively. The sequence number of panels may be specified as 

(13) 
q = 1 ,..., (N,,+N,,); 

where Ns, and N,, are the numbers of chordwise panels on the planform and wake 
respectively, and Nsv is the number of spanwise panels. 

The perturbation velocity V at any field point is equal to a finite sum of the 
induced velocities of all the vortex rings, i.e. 

1 n = P+ (a- UNsg = (!I.,P), 

p = 1 ,..., NSv; n = 1 ,..., N, 

N 
v = x r n v ,  

n-1 

where r,, is the strength of each vortex rings, V, the induced velocity due to a pair 
of vortex rings which are symmetric about the x-axis. The induced velocity of each 
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vortex segment of finite length may be calculated by the Biot-Savart law. 
Obviously, V thus obtained automatically satisfies the Laplace equation and the 
boundary condition a t  infinity that the perturbation velocity is approaching zero. 

According to  the Kelvin theorem, the rate of change of the circulation around a 
closed material curve is zero. Then, we get the boundary condition on the wake 

= 0. 
dT 
dt 

surface 
- 

The strength of vortex ring n on the wake, which can be obtained by - rn = p 9 . p )  = r NTp exp {-iw[zcpg-%"l'Ycp)]} exp (iwt), 

n = N s + l  ,..., N ;  p =  1 ,..., Nsy, 

where NTp = p + (NSx - 1 )  Nsv ( p  = 1,  . . . , N,,), rNTp is the strength of rings next to the 
trailing edge. The Kutta condition a t  the trailing edge is given by 

(A.cp)lx=xT(y) = 0. (17) 

From (5), we get the loading at panel n 

(AC,), = 2 { i w ~ ~ + 2 c , ~ ( ~ ~ . . 1 - ~ q - l ~ p ) )  1 -  cos p 7 p )  

+ (j%+LP)-fiQ.P)) cos x(g+l.p)]}eiwt, 

q = 1 ,..., Nsx; p = 1 ,..., Ns,;  

where Cn is the mean chord length of the nth panel, x(9.P) the sweep angle of the 
vortex segment connecting the nodes (q, p )  and (q + 1, p ) .  It follows that (17) gives 

n = 1 ,..., N,, 

, p = 1, ..* ,Nsy, (19) f i ~ ~ , ,  P )  = ~ j i ~ , , - i ,  P) 

where 

where 

The no-penetration condition, equation (4), is imposed a t  the control points. Thus, 
the resulting matrix equation of (Ns-Nsy)  unknowns is written as 

(21) 

where fi, = fi(z,,, ycm) is determined by (4), Kmn = ( K n * n ) ~  kmn, f n  and W, are 
complex quantities. Equation (21) is solved to  determine the rn which are then used 
to calculate the loading distribution and various energetics coefficients. 

- [ k m n ~ { f n >  = { fim 1, - 
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FIQURE 2. Comparison of thrust and power coefficients. Calculated by -, present method; 
_ _ _  , Wu's theory. 

4. Analysis of swimming waving plates 
The accuracy of the present method has been found to be reliable. For the 

rectangular waving plate with aspect ratio A = 8, figure 2 compares the variation of 
the thrust and power coefficients with reduced frequency from the present method 
with that from Wu's two-dimensional computations (Wu 1961), showing that 
reasonable results can be obtained by the present method. The swimming 
performance of several rectangular and triangular waving plates will be discussed in 
the following cases. 

4.1. Rectangular waving plate 
A variety of fishes have bodies, or at least their undulating parts, in a planar form 
of finite aspect ratio. The geometry of such fishes can reasonably be simplified as a 
rectangular thin plate whose undulatory motion with constant or increasing 
amplitude may represent some basic swimming characteristics of fishes, especially 
those with anguilliform mode. 

In order to find the effect of the aspect ratio on the propulsive performance, we 
took (i) A = 8;  (ii) A = 1 ; (iii) A = 0.5. The last two cases are close to those of many 
actual fish. Two important parameters of the undulatory motion are reduced 
frequency w ,  with a value of around 10 based on the whole fish length for anguilliform 
motion (Lighthill 1975), and wavenumber k ,  giving the wave velocity V, = w / k .  It 
should be emphasized that the large value of the reduced frequency is suitable only 
for whole body undulation and cannot be used for modelling lunate tail propulsion 
for which w is taken as around 1 based on tail length. The swimming of a waving plate 
of constant amplitude has been discussed in Cheng et aE. (1989). Here, particular 
attention will be given to the effect of variable amplitude. The motion of a flexible 

(22) 
plate is taken as h = xm exp [ i (w t -kx ) ] .  

Four undulation amplitude cases will be considered : values of the power of x in (22) 
of 0, 1,  2 and 3. 

Figure 3 shows the thrust and efficiency against w for the above four wave 
amplitudes a t  k = 3. Figure 4 shows the dependence of C ,  and 7 on k a t  w = 8. From 
these figures, we can find: 

(a )  The forward thrust may be generated by the undulatory motion of a three- 

12 FLM 232 
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FIGURE 3. Thrust and efficiency variation with frequency for a rectangular waving plate with 
four kinds of amplitude variation. 

dimensional flexible plate with constant or increasing amplitude. The propulsive 
efficiency is lower for waves progressing from tail to head (corresponding to  k < 0) 
than those for waves progressing from head to  tail (corresponding to k > 0) ,  as 
indicated by Wu (1961) for two-dimensional waving plate analysis. This agrees with 
the observation that a large number of aquatic animals in nature move in the 
opposite direction to that of wave propagation a t  high Reynolds number, although 
it has been found that some polychaete worms move in the same direction (Lighthill 
1975, pp. 15). 

( b )  Thrust may be produced only if the wave velocity w l k  is greater than a critical 
value, which is equal to  the swimming velocity for a constant-amplitude wave and 
a little larger than the swimming velocity for an increasing-amplitude wave. This is 
also confirmed by observation. 

(c) The thrust and power increase as the reduced frequency increases or the 
wavenumber decreases, while the values for the constant-amplitude wave are higher 
than the values for the increasing-amplitude wave. 

(d )  As the frequency increases, the propulsive efficiency increases rapidly from zero 
to its maximum value for the variable-amplitude case and decreases gradually from 
1 for the constant-amplitude case. As the wavenumber increases, the efficiency 
increases linearly, but with a peak around k = 6 for the wave amplitude increasing 
markedly. Therefore, if the wave amplitude increases steeply, the wavenumber of 
undulation should be smaller than 2 x ,  i.e. the wavelength of the progressing wave is 
larger than body length. It must be emphasized, of course, that  this is for w = 8, 
when k = 6 corresponds to a wave velocity equal to Q of the swimming velocity. 

( e )  I n  general, the efficiency remains unchanged and the coefficients of thrust and 
power decrease as the aspect ratio decreases. When the wavelength is close to the 
body length, however, the thrust coefficient is nearly unchanged or even increases 
with decreasing aspect ratio. Consequently, in this case a reduction in size in the 
dorso-ventral direction of planar fishes results in no deterioration, and sometimes 
even an improvement, of propulsive performance. 

The curves for lateral forces and moments against k a t  w = 8 for constant and 
linear amplitudes are plotted in figure 5.  It can be seen that the absolute values of 
C,,, C,,, C,, and C,, for constant-amplitude waves are close to those for linear- 
amplitude waves, but their phases are different. The maximum values of these 
parameters are found in the diagram around k = 0, corresponding to the 
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FIQURE 4. Thrust and efficiency variation with wavenumber for a rectangular waving plate 
with four kinds of amplitude variation and three values of aspect ratio. 

pitching-heaving oscillation of a rigid plate. It is noted that for k larger than about 
6, representing a progressing wave with about one wavelength along the body, all the 
in-phase and out-of-phase side forces and moments, especially for those of the 
constant-amplitude wave, vanish, producing the smallest recoil. 

The variation of the ratio of the thrust due to leading-edge suction to the total 
thrust with k for constant- and linear-amplitude waves is shown in figure 6. For a 
constant-amplitude wave, the ratio decreases with increasing k for fixed w or with 
decreasing w for fixed k. For an increasing-amplitude wave, the ratio is very low 

12-2 
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FIQURE 5. Side force and moment variation with wavenumber for a rectangular waving plate 
with two kinds of amplitude variation and two values of aspect ratio. 
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FIGURE 6. Leading-edge suction ratio variation with wavenumber for a rectangular waving 
plate with two kinds of amplitude variation and three values of aspect ratio. 

because the undulation amplitude a t  the leading-edge becomes zero. Thus a larger 
wavenumber is advisable to avoid leading-edge separation. 

4.2. Discussion of the three-dimensional effect 

The three-dimensional effect of waving plates will be further discussed in this section. 
Computational results for small and large aspect ratio are compared with elongated 
body theory (Lighthill 1975) (denoted by EBT) and two-dimensional theory (Wu 
1961 ) respectively. 

According to Lighthill's theory, the propulsive efficiency is determined only by 
wave velocity Vw, i.e. 

= 1 - 1 w .  (23) 
2 vw 

Propulsive efficiency calculated by the present theory for a constant-amplitude wave 
with aspect ratio A = 0.5 is given in figure 7 in which two curves for r,~ against 
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FIGURE 7. Comparison of efficiency calculated by present theory with that by other theories. 

V, = 8 / k  and 7 against Vw = $ are plotted. Wu’s solution of a constant-amplitude 
waving plate a t  k = 6 and results of EBT are also drawn in the figure. It is found that 
all curves are close together. From the above section, it can be seen that efficiency 
is almost unaffected by aspect ratio. So the propulsive efficiency of three-dimensional 
waving plates with infinite to small aspect ratio is nearly the same as the results 
given by EBT, which are determined only by a combination of frequency and 
wavenumber, i.e. wave velocity V, = w / k .  It may be confirmed that this feature still 
exists for undulation amplitude increasing slowly along the body length. However, 
if the amplitude increases steeply, i t  follows from the previous discussion that the 
efficiency of the three-dimensional waving plate does not coincide with the result of 
EBT. 

Let b, denote the semispan of the trailing edge, the thrust coefficient obtained by 
EBT is $’/ t 

In figure 8 ,  curves of C, varying with w at k = 3,  obtained by the calculation of a 
three-dimensional waving plate with aspect ratios A = 0.5, 1.0 and 8, are compared 
with that by (24) letting A = (2b,)2/S = 0.5 and Wu’s two-dimensional solution. In 
figure 9, curves for C ,  varying with k at w = 8 are also shown. It can be seen that 
the three-dimensional solution for A = 8 is close to the two-dimensional solution, 
while the three-dimensional solution for A = 0.5 is close to the result of EBT. 
Consequently, for the swimming of an elongated flexible body, quite accurate results 
may be given by EBT for slenderness ratios up to 0.5. For larger aspect ratios, results 
of three-dimensional solutions show that in general EBT will not be valid. For higher 
values of k ,  however, figure 9 shows that thrust coefficient remains nearly unchanged 
with respect to aspect ratio ; furthermore, C ,  for large aspect ratio is even lower than 
that for small aspect ratio. 

According to these comparisons, it may be confirmed that undulation of a flexible 
plate can reduce the effect of aspect ratio. When wavelength is close to body length, 
three-dimensional effects almost disappear, i.e. cross-sectional flow at any spanwise 
station for a rectangular flexible plate with arbitrary aspect ratio is approximately 
equivalent to two-dimensional flow, and the hydrodynamic properties of a small- 
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aspect-ratio waving plate are close to those of an infinite-aspect-ratio waving plate. 
It can be imagined that in the flow pattern a t  the side edge of a waving plate, the 
flow tends to move from the lower surface to the upper surface along the chord 
segments from wave crest to wave trough, while it tends to move from the upper to 
the lower surface along the chord segments from wave trough to wave crest, so that 
the two streams of transverse flow partly cancel out and the spanwise flow is 
weakened. Furthermore, as pointed out by Cheng & Murillo (1984) (first noted by 
Cheng 1976), the self-averaging of the periodic wake structure may reduce three- 
dimensional effects for an oscillating wing when WA 9 1. This is also true for the 
present case of a waving plate. So, the combination of the continuous waving 
deformation of the flexible plate and the self-averaging effect may result in 
considerable weakening of the chordwise vortex along the side edge and the spanwise 
flow on the plate surface and in the wake as the wavelength tends to body length. 
Thus, quasi-two-dimensional flow may exist for a waving plate of about one 
wavelength. Obviously, if the wave amplitude changes quickly along the body 
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FIGURE 10. Thrust and efficiency variation with wavenumber for rectangular and triangular 
waving plates with four kinds of amplitude variation. 

length, spanwise flow may be strengthened, and so the effect of aspect ratio is more 
marked. 

4.3. Modi$cation of anguilliform to carangiform mode 
The carangiform mode of propulsion is found in a wide variety of fishes and sea 
animals. Lighthill (1975) proposed that fishes using the carangiform mode have 
certain important morphological characteristics in their posterior body, namely, 
necking of the body anterior to the caudal fin, and a deep cross-section near the mass 
centre to reduce recoil due to unbalanced oscillations of the side force. It is very 
important that the characteristic wavelike feature is retained within the region to 
which the undulations are confined in carangiform motion which is probably 
developed from the more obviously wavy anguilliform motion. In  other respects, the 
wave amplitude (which increases gradually from head to tail in anguilliform motion) 
shows such a steep increase towards the tail in the last third of the body length that 
the observer of carangiform motion cannot see anything like a whole wavelength at 
any one time. 

In the present study, propulsion achieved by the undulation of the posterior body 
modelled by a triangular waving plate will be considered. This model represents some 
features of the body shape for carangiform propulsion, i.e. the necking of the body 
anterior to the tail and the developed caudal fin. Observation shows that the reduced 
frequency based on the length of the undulating part of the body is about 4, and the 
wavenumber is 0 to n, owing to no complete wavelength being apparent. 

The propulsive characteristics are calculated for a triangular plate and a 
rectangular plate, both with semispan b = 0.25 (the ratio of the semispan of trailing 
edge to the root chord), and with the four wave amplitudes shown in (22). The 
variation of these quantities with wavenumber at w = 4 is shown in figure 10. With 
the transition of anguilliform mode to carangiform mode, the confinement of 
undulations to a reduced fraction of the fish’s length in the neighbourhood of the 
caudal fin is accompanied by the undulating amplitude increasing posteriorly from 
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a small value, or even zero, in the anterior region to a large value near the trailing 
edge, which corresponds to  the variable-amplitude undulation of the last three cases 
in (22). 

The curves of C', show that with increasing k, thrust coefficients of the triangular 
plate, while decreasing and being close to each other for several variable-amplitude 
cases, are higher than those of the rectangular plate. The values of the efficiency of 
the triangular plate for amplitudes of the second and third power of x, and the first 
power of x a t  lower values of k, are also higher than those of the rectangular plate. 
This shows that for increasing wave amplitude the propulsive performance of the 
triangular plate is better than that of the rectangular plate, especially at lower 
wavenumbers. So when propulsion is mainly accomplished by the undulation of the 
posterior body and characterized by the carangiform mode, the pronounced necking 
of the body anterior to  the tail and the developing of a caudal fin, forming a body 
shape similar to a triangular plate in lateral view, are important morphological 
adaptations of fishes and improve propulsive performance. However, the cor- 
responding form of undulation is that no complete wavelength is at any time 
apparent, which may result in high propulsive efficiency. 

For wave amplitude varying slowly along the body length, corresponding to a 
constant-amplitude wave, the efficiency of triangular plates is obviously lower than 
that of rectangular plates, and the thrust of triangular plates is lower than that of 
rectangular plates a t  lower values of k and both are close to each other at higher 
values of k. Therefore, for an undulation of nearly constant amplitude, the 
propulsive performance of a slender triangular plate is no longer better than that of 
a slender rectangular plate. This may explain the features of body shape and 
movement of fishes adopting anguilliform mode, i.e. body shape (depth in dorsal and 
anal direction) having no obvious variation along body length and wavenumber 
being higher. 

5. Conclusion 
Using the present linear three-dimensional waving plate theory, the swimming 

performances of undulatory motion of fish are discussed. The following conclusions 
may be drawn : 

(i) Undulatory motion of a flexible plate may reduce three-dimensional effects, 
such as the effects of aspect ratio and the shape of the waving plate. It seems that 
a larger number of aquatic animals adopting undulation as their swimming means 
have utilized this hydrodynamic property. 

(ii) Reasonable results may be obtained by the present three-dimensional waving 
plate theory for swimming propulsion of undulating plates with large and small 
aspect ratio. The present analysis shows that the elongated-body theory is valid over 
a wide range with respect ratio up to 0.5, as long as the undulation amplitude varies 
slowly along the body length and the chordwise variation of local span is small (being 
close to rectangular). 

(iii) For the anguilliform mode of propulsion a t  a realistic reduced frequency, the 
swimming performance is best when the span of undulating plates is nearly 
unchanged and the wave amplitude is constant or increases slightly along body 
length, and approximately a complete wavelength is apparent a t  any time. Such 
features coincide with observation. Theoretical results also show that this mode has 
the properties of two-dimensional flow. Therefore, i t  is not difficult to understand 
that many fishes adopting the anguilliform mode have elongated planar form bodies. 
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(iv) In  the modification of anguilliform to carangiform mode, the front half of the 
body loses its flexibility and flexural movement is confined to the rear half or even 
the rear third of the body. The propulsive performance of triangular plates is then 
notably better than that of rectangular plates, so the pronounced necking of the 
body anterior to  the tail and the development of the caudal fin are important 
morphological adaptations and act to improve propulsive performance. At the same 
time the undulation whereby the wavelength is larger than the tail length (no 
complete wavelength is a t  any time apparent) results in no deterioration in 
propulsive efficiency which remains high. 

Owing to the limitation of linear assumptions, the non-planar and nonlinear 
features of waving plate and vortical sheets which may affect the flow and 
performance of waving plates significantly are not considered here. These remain to 
be improved and may be studied by a direct extension of the present method. 

The suggestions and discussions on this paper given by referees are much 
appreciated. 
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